Evidence for a single-layer van der Waals multiferroic

  • Matsukura, F., Tokura, Y. & Ohno, H. Management of magnetism by electrical fields. Nat. Nanotechnol. 10, 209–220 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kurumaji, T. et al. Magnetoelectric responses induced by area rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    ADS 

    Google Scholar 

  • Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Pimenov, A. et al. Potential proof for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006).

    CAS 

    Google Scholar 

  • Rovillain, P. et al. Magnetoelectric excitations in multiferroic TbMnO3 by Raman scattering. Phys. Rev. B 81, 054428 (2010).

    ADS 

    Google Scholar 

  • Kibayashi, S., Takahashi, Y., Seki, S. & Tokura, Y. Magnetochiral dichroism resonant with electromagnons in a helimagnet. Nat. Commun. 5, 4583 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khomskii, D. Classifying multiferroics: mechanisms and results. Physics 2, 20 (2009).

    Google Scholar 

  • Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, B. et al. Electrical management of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, S., Li, L., Wang, Z., Mak, Okay. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal all the way down to the monolayer restrict. Nature 546, 270–273 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Burch, Okay. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals supplies. Nature 563, 47–52 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mak, Okay. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).

    Google Scholar 

  • Astrov, D. N. The magnetoelectric impact in antiferromagnetics. Sov. Phys. – JETP 11, 708 (1960).

    Google Scholar 

  • Rado, G. T. & Folen, V. J. Statement of the magnetically induced magnetoelectric impact and proof for antiferromagnetic domains. Phys. Rev. Lett. 7, 310–311 (1961).

    ADS 

    Google Scholar 

  • Newnham, R. E., Kramer, J. J., Schulze, W. A. & Cross, L. E. Magnetoferroelectricity in Cr2BeO4. J. Appl. Phys. 49, 6088–6091 (1978).

    ADS 
    CAS 

    Google Scholar 

  • Kimura, T. et al. Magnetic management of ferroelectric polarization. Nature 426, 55–58 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McGuire, M. A. Crystal and magnetic buildings in layered, transition steel dihalides and trihalides. Crystals 7, 121 (2017).

    Google Scholar 

  • Lai, Y. et al. Two-dimensional ferromagnetism and pushed ferroelectricity in van der Waals CuCrP2S6. Nanoscale 11, 5163–5170 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Botana, A. S. & Norman, M. R. Digital construction and magnetism of transition steel dihalides: bulk to monolayer. Phys. Rev. Mater. 3, 44001 (2019).

    CAS 

    Google Scholar 

  • Amoroso, D., Barone, P. & Picozzi, S. Spontaneous skyrmionic lattice from anisotropic symmetric change in a Ni-halide monolayer. Nat. Commun. 11, 5784 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pollini, I., Thomas, J. & Lenselink, A. Optical properties of layered transition-metal iodides. Phys. Rev. B 30, 2140–2148 (1984).

    ADS 
    CAS 

    Google Scholar 

  • Ju, H. et al. Potential persistence of multiferroic order all the way down to bilayer restrict of van der Waals materials NiI2. Nano Lett. 21, 5126–5132 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kurumaji, T. Spiral spin buildings and skyrmions in multiferroics. Phys. Sci. Rev. https://doi.org/10.1515/psr-2019-0016 (2020).

  • Amoroso, D., Barone, P. & Picozzi, S. Interaction between single-ion and two-ion anisotropies in annoyed 2D semiconductors and tuning of magnetic buildings topology. Nanomaterials 11, 1873 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedt, J. M., Sanchez, J. P. & Shenoy, G. Okay. Digital and magnetic properties of steel diiodides MI2 (M = V, Cr, Mn, Fe, Co, Ni, and Cd) from 129I Mössbauer spectroscopy. J. Chem. Phys. 65, 5093–5102 (1976).

    ADS 
    CAS 

    Google Scholar 

  • Kuindersma, S., Sanchez, J. & Haas, C. Magnetic and structural investigations on NiI2 and CoI2. Phys. B+C 111, 231–248 (1981).

    ADS 
    CAS 

    Google Scholar 

  • Liu, H. et al. Vapor deposition of magnetic van der Waals NiI2 crystals. ACS Nano 14, 10544–10551 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kumdersma, S. R., Boudewijn, P. R. & Haas, C. Close to infrared d-d transitions of NiI2, CdI2:Ni2+, and CoI2. Phys. Stat. Sol. (b) 108, 187–194 (1981).

    ADS 

    Google Scholar 

  • Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cenker, J. et al. Direct commentary of two-dimensional magnons in atomically skinny CrI3. Nat. Phys. 17, 20–25 (2021).

    CAS 

    Google Scholar 

  • Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, T. P. T., Yamauchi, Okay., Oguchi, T., Amoroso, D. & Picozzi, S. Electrical-field tuning of the magnetic properties of bilayer VI3: a first-principles examine. Phys. Rev. B 104, 014414 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Xiang, H. J., Kan, E. J., Zhang, Y., Whangbo, M.-H. & Gong, X. G. Basic idea for the ferroelectric polarization induced by spin-spiral order. Phys. Rev. Lett. 107, 157202 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Prayitno, T. B. Controlling section transition in monolayer steel diiodides XI2 (X: Fe, Co, and Ni) by service doping. J. Phys. Condens. Matter 33, 335803 (2021).

    CAS 

    Google Scholar 

  • Narayan, A., Cano, A., Balatsky, A. V. & Spaldin, N. A. Multiferroic quantum criticality. Nat. Mater. 18, 223–228 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zomer, P., Guimarães, M., Brant, J., Tombros, N. & Van Wees, B. Quick choose up method for prime quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    ADS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohrbach, A., Hafner, J. & Kresse, G. Digital correlation results in transition-metal sulfides. J. Phys. Condens. Matter 15, 979–996 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional idea and powerful interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P. et al. Restoring the density-gradient enlargement for change in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Becke, A. D. On the large-gradient conduct of the density useful change power. J. Chem. Phys. 85, 7184–7187 (1986).

    ADS 
    CAS 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.