Free-standing homochiral 2D monolayers by exfoliation of molecular crystals

  • Tan, C. et al. Latest advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered supplies. Science 340, 1226419 (2013).

    Google Scholar 

  • Hernandez, Y. et al. Excessive-yield manufacturing of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their construction evaluation by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered supplies. Science 331, 568–571 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puthirath Balan, A. et al. Exfoliation of a non-van der Waals materials from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varoon, Ok. et al. Dispersible exfoliated zeolite nanosheets and their utility as a selective membrane. Science 334, 72–75 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, Y. et al. Steel-organic framework nanosheets as constructing blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicks, J., Boer, S. A., White, N. G. & Foster, J. A. Monolayer nanosheets fashioned by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem. Sci. 12, 3322–3327 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novoselov, Ok. S. et al. Electrical discipline impact in atomically skinny carbon movies. Science 306, 666–669 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xing, L. B., Peng, Z. T., Li, W. T. & Wu, Ok. On controllability and applicability of floor molecular self-assemblies. Acc. Chem. Res. 52, 1048–1058 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prepare dinner, T. R., Zheng, Y.-R. & Stang, P. J. Steel–natural frameworks and self-assembled supramolecular coordination complexes: evaluating and contrasting the design, synthesis, and performance of metallic–natural supplies. Chem. Rev. 113, 734–777 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujita, M., Yazaki, J. & Ogura, Ok. Preparation of a macrocyclic polynuclear advanced, [(en)Pd(4,4′-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which acknowledges an natural molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).

    CAS 

    Google Scholar 

  • Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized natural host frameworks. Nature 378, 469–471 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Mal, P., Breiner, B., Rissanen, Ok. & Nitschke, J. R. White phosphorus is air-stable inside a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rizzuto, F. J. & Nitschke, J. R. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nat. Chem. 9, 903–908 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamashina, M. et al. An antiaromatic-walled nanospace. Nature 574, 511–515 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, B., Holstein, J. J., Horiuchi, S., Hiller, W. G. & Intelligent, G. H. Pd(II) coordination sphere engineering: pyridine cages, quinoline bowls, and heteroleptic tablets binding one or two fullerenes. J. Am. Chem. Soc. 141, 8907–8913 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: uncommon regioselectivity and environment friendly catalysis. Science 312, 251–254 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, Ok. N. & Toste, F. D. A supramolecular microenvironment technique for transition metallic catalysis. Science 350, 1235–1238 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Extremely environment friendly catalysis of the Kemp elimination within the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xuan, W., Zhang, M., Liu, Y., Chen, Z. & Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 134, 6904–6907 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G., Yu, W. & Cui, Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J. Am. Chem. Soc. 130, 4582–4583 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, T., Liu, Y., Xuan, W. & Cui, Y. Chiral nanoscale metallic–natural tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 49, 4121–4124 (2010).

    CAS 

    Google Scholar 

  • Dong, J. et al. Self-Meeting of extremely steady zirconium(IV) coordination cages with aggregation induced emission molecular rotors for live-cell imaging. Angew. Chem. Int. Ed. 59, 10151–10159 (2020).

    CAS 

    Google Scholar 

  • Solar, Y. et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor prognosis and image-guided remedy. Proc. Natl Acad. Sci. USA 116, 1968–1973 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • August, D. P. et al. Self-assembly of a layered two-dimensional molecularly woven material. Nature 588, 429–435 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, J. et al. Chiral NH-controlled supramolecular metallacycles. J. Am. Chem. Soc. 139, 1554–1564 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Backes, C. et al. Equipartition of vitality defines the dimensions–thickness relationship in liquid-exfoliated nanosheets. ACS Nano 13, 7050–7061 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dou, L. et al. Atomically skinny two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dazzi, A. & Prater, C. B. AFM-IR: know-how and purposes in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–delicate crystalline supplies. Science 359, 675–679 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Imaging defects and their evolution in a metallic–natural framework at sub-unit-cell decision. Nat. Chem. 11, 622–628 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrand, Y., Crump, M. P. & Davis, A. P. An artificial lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ke, C., Destecroix, H., Crump, M. P. & Davis, A. P. A easy and accessible artificial lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem. 11, 52–56 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, J. et al. Ultrathin two-dimensional porous natural nanosheets with molecular rotors for chemical sensing. Nat. Commun. 8, 1142 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, C. et al. Excessive-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for extremely delicate and selective fluorescence DNA sensors. J. Am. Chem. Soc. 137, 10430–10436 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • QSTEM v.2.51 (2018); http://www.qstem.org

  • Mei, X. & Wolf, C. Enantioselective sensing of chiral carboxylic acids. J. Am. Chem. Soc. 126, 14736–14737 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.