The lung microbiome regulates brain autoimmunity

  • Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, way of life and environmental danger components for a number of sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Odoardi, F. et al. T cells grow to be licensed within the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    ADS 
    CAS 

    Google Scholar 

  • O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of continual lung illness. J. Immunol. 196, 4839–4847 (2016).

    PubMed 

    Google Scholar 

  • Jin, C. et al. Commensal microbiota promote lung most cancers improvement by way of γδ T cells. Cell 176, 998–1013 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yokote, H. et al. NKT cell-dependent amelioration of a mouse mannequin of a number of sclerosis by altering intestine flora. Am. J. Pathol. 173, 1714–1723 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ochoa-Repáraz, J. et al. Position of intestine commensal microflora within the improvement of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    PubMed 

    Google Scholar 

  • Berer, Ok. et al. Commensal microbiota and myelin autoantigen cooperate to set off autoimmune demyelination. Nature 479, 538–541 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothhammer, V. et al. Kind I interferons and microbial metabolites of tryptophan modulate astrocyte exercise and central nervous system irritation by way of the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyauchi, E. et al. Intestine microorganisms act collectively to exacerbate irritation in spinal cords. Nature 585, 102–106 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Flügel, A., Willem, M., Berkowicz, T. & Wekerle, H. Gene switch into CD4+ T lymphocytes: inexperienced fluorescent protein-engineered, encephalitogenic T cells illuminate mind autoimmune responses. Nat. Med. 5, 843–847 (1999).

    PubMed 

    Google Scholar 

  • Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS gray matter degeneration. Nature 566, 503–508 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular constructions in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Kivisäkk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells throughout experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lodygin, D. et al. A mix of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in actual time throughout CNS autoimmunity. Nat. Med. 19, 784–790 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Starossom, S. C. et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawakami, N. et al. The activation standing of neuroantigen-specific T cells within the goal organ determines the medical consequence of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Odoardi, F. et al. On the spot impact of soluble antigen on effector T cells in peripheral immune organs throughout immunotherapy of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 104, 920–925 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hanisch, U. Ok. & Kettenmann, H. Microglia: lively sensor and versatile effector cells within the regular and pathologic mind. Nat. Neurosci. 10, 1387–1394 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Rock, R. B. et al. Transcriptional response of human microglial cells to interferon-γ. Genes Immun. 6, 712–719 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Popovic, N. et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 51, 215–223 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Elmore, M. R. et al. Colony-stimulating issue 1 receptor signaling is critical for microglia viability, unmasking a microglia progenitor cell within the grownup mind. Neuron 82, 380–397 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz, M. et al. Distinct and nonredundant in vivo capabilities of IFNAR on myeloid cells restrict autoimmunity within the central nervous system. Immunity 28, 675–686 (2008).

    CAS 

    Google Scholar 

  • Khorooshi, R. et al. Induction of endogenous sort I interferon throughout the central nervous system performs a protecting position in experimental autoimmune encephalomyelitis. Acta Neuropathol. 130, 107–118 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McNab, F., Mayer-Barber, Ok., Sher, A., Wack, A. & O’Garra, A. Kind I interferons in infectious illness. Nat. Rev. Immunol. 15, 87–103 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley, Ok. C. et al. Microbiota-driven tonic interferon indicators in lung stromal cells shield from influenza virus an infection. Cell Rep. 28, 245–256 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • d’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Complete lipopolysaccharide from the human intestine microbiome silences toll-like receptor signaling. mSystems 2, e00046-17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. et al. Dysregulated lung commensal micro organism drive interleukin-17B manufacturing to advertise pulmonary fibrosis by their outer membrane vesicles. Immunity 50, 692–706 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bhor, V. M., Thomas, C. J., Surolia, N. & Surolia, A. Polymyxin B: an ode to an previous antidote for endotoxic shock. Mol. Biosyst. 1, 213–222 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Vargas-Caraveo, A. et al. Lipopolysaccharide enters the rat mind by a lipoprotein-mediated transport mechanism in physiological situations. Sci. Rep. 7, 13113 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandiego, C. M. et al. Imaging sturdy microglial activation after lipopolysaccharide administration in people with PET. Proc. Natl Acad. Sci. USA 112, 12468–12473 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. & Huffnagle, G. B. The microbiome and the respiratory tract. Annu. Rev. Physiol 78, 481–504 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Belkaid, Y. & Hand, T. W. Position of the microbiota in immunity and irritation. Cell 157, 121–141 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erny, D. et al. Host microbiota continuously management maturation and performance of microglia within the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braniste, V. et al. The intestine microbiota influences blood–mind barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. An intestinal commensal symbiosis issue controls neuroinflammation by way of TLR2-mediated CD39 signalling. Nat. Commun. 5, 4432 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonner, J. Ok. et al. Dietary tryptophan hyperlinks encephalogenicity of autoreactive T cells with intestine microbial ecology. Nat. Commun. 10, 4877 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R. & Weinstock-Guttman, B. Interferon β for a number of sclerosis. Chilly Spring Harb. Perspect. Med. 8, a032003 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, B., Chang, E. Y. & Cheng, G. The sort I IFN induction pathway constrains Th17-mediated autoimmune irritation in mice. J. Clin. Make investments. 118, 1680–1690 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Research on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, Ok., McCoy, Ok. D. & Macpherson, A. J. Use of axenic animals in learning the difference of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Kennedy, E. A., King, Ok. Y. & Baldridge, M. T. Mouse microbiota fashions: evaluating germ-free mice and antibiotics therapy as instruments for modifying intestine micro organism. Entrance. Physiol. 9, 1534 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wypych, T. P., Wickramasinghe, L. C. & Marsland, B. J. The affect of the microbiome on respiratory well being. Nat. Immunol. 20, 1279–1290 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Balmer, M. L. et al. The liver could act as a firewall mediating mutualism between the host and its intestine commensal microbiota. Sci. Transl. Med. 6, 237ra266 (2014).

    Google Scholar 

  • Määttä, J. A., Coffey, E. T., Hermonen, J. A., Salmi, A. A. & Hinkkanen, A. E. Detection of myelin primary protein isoforms by natural focus. Biochem. Biophys. Res. Commun. 238, 498–502 (1997).

    PubMed 

    Google Scholar 

  • Murray, C. et al. Interdependent and impartial roles of sort I interferons and IL-6 in innate immune, neuroinflammatory and illness behaviour responses to systemic poly I:C. Mind Behav. Immun. 48, 274–286 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rittirsch, D. et al. Acute lung damage induced by lipopolysaccharide is impartial of complement activation. J. Immunol. 180, 7664–7672 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Klindworth, A. et al. Analysis of basic 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based variety research. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Hoyningen-Huene, A. J. E. et al. Bacterial succession alongside a sediment porewater gradient at Lake Neusiedl in Austria. Sci. Information 6, 163 (2019).

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a flexible open supply software for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “All-species Dwelling Tree Venture (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database undertaking: improved knowledge processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. GMPR: a sturdy normalization methodology for zero-inflated rely knowledge with software to microbiome sequencing knowledge. PeerJ 6, e4600 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, Ok. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R bundle to analyse and visualise 16S rRNA amplicon knowledge. Preprint at https://doi.org/10.1101/299537 (2018).

  • Wickham, H. ggplot2: Elegant Graphics for Information Evaluation (Springer, 2016).

  • Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Cabeza, R. et al. An RNA sequencing transcriptome evaluation reveals novel insights into molecular points of the nitrate influence on the nodule exercise of Medicago truncatula. Plant Physiol. 164, 400–411 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of huge gene lists utilizing DAVID bioinformatics assets. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar 

  • Doorn, Ok. J. et al. Mind region-specific gene expression profiles in freshly remoted rat microglia. Entrance. Cell. Neurosci. 9, 84 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klinkert, W. E. et al. TNF-α receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an summary. J. Neuroimmunol. 72, 163–168 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • A global timing mechanism regulates cell-type-specific wiring programmes

  • Südhof, T. C. In direction of an understanding of synapse formation. Neuron 100, 276–293 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit meeting. Cell 143, 343–353 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Hassan, B. A. & Hiesinger, P. R. Past molecular codes: easy guidelines to wire advanced brains. Cell 163, 285–291 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell 171, 1206–1220 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Özel, M. N. et al. Neuronal variety and convergence in a visible system developmental atlas. Nature 589, 88–95 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hobert, O. Terminal selectors of neuronal id. Curr. Prime. Devel. Biol. 116, 455–475 (2016).

    CAS 

    Google Scholar 

  • Hong, W. & Luo, L. Genetic management of wiring specificity within the fly olfactory system. Genetics 196, 17–29 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dasen, J. S. & Jessell, T. M. Hox networks and the origins of motor neuron variety. Curr. Prime. Devel. Biol. 88, 169–200 (2009).

    CAS 

    Google Scholar 

  • Larkin, A. et al. FlyBase: updates to the Drosophila melanogaster information base. Nucleic Acids Res. 49, D899–D907 (2020).

    PubMed Central 

    Google Scholar 

  • Scheffer, L. Okay. et al. A connectome and evaluation of the grownup Drosophila central mind. eLife 9, e57443 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional packages of circuit meeting within the Drosophila visible system. Neuron 108, 1045–1057 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reilly, M. B., Cros, C., Varol, E., Yemini, E. & Hobert, O. Distinctive homeobox codes delineate all of the neuron courses of C. elegans. Nature 584, 595–601 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Truman, J. W., Talbot, W. S., Fahrbach, S. E. & Hogness, D. S. Ecdysone receptor expression within the CNS correlates with stage-specific responses to ecdysteroids throughout Drosophila and Manduca growth. Growth 120, 219–234 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Riddiford, L. M., Cherbas, P. & Truman, J. W. Ecdysone receptors and their organic actions. Vitam. Horm. 60, 1–73 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Agawa, Y. et al. Drosophila Blimp-1 is a transient transcriptional repressor that controls timing of the ecdysone-induced developmental pathway. Mol. Cell. Biol. 27, 8739–8747 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pak, M. D. & Gilbert, L. I. A developmental evaluation of ecdysteroids in the course of the metamorphosis of extit Drosophila melanogaster. J. Liq. Chromatogr. 10, 2591–2611 (1987).

    CAS 

    Google Scholar 

  • Rabinovich, D., Yaniv, S. P., Alyagor, I. & Schuldiner, O. Nitric oxide as a switching mechanism between axon degeneration and regrowth throughout developmental transforming. Cell 164, 170–182 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shlyueva, D. et al. Hormone-responsive enhancer-activity maps reveal predictive motifs, oblique repression, and focusing on of closed chromatin. Mol. Cell 54, 180–192 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific necessities by focused blockade and rescue. Growth 130, 271–284 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, C. et al. Management of synaptic specificity by establishing a relative choice for synaptic companions. Neuron 103, 865–877 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nern, A., Zhu, Y. & Zipursky, S. L. Native N-cadherin interactions mediate distinct steps within the focusing on of lamina neurons. Neuron 58, 34–41 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher, Y. E. et al. FlpStop, a software for conditional gene management in Drosophila. eLife 6, e22279 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, M., Imam, F. B., Talbot, W. S., Ganetzky, B. & Hogness, D. S. Drosophila ecdysone receptor mutations reveal purposeful variations amongst receptor isoforms. Cell 91, 777–788 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Yao, T. P. et al. Purposeful ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schwabe, T., Borycz, J. A., Meinertzhagen, I. A. & Clandinin, T. R. Differential adhesion determines the group of synaptic fascicles within the Drosophila visible system. Curr. Biol. 24, 1304–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, Okay. P., Hurban, P., Watanabe, T. & Hogness, D. S. Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science 276, 114–117 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Takemura, S. et al. Synaptic circuits and their variations inside totally different columns within the visible system of Drosophila. Proc. Natl Acad. Sci. USA 112, 13711–13716 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, L. et al. Ig superfamily ligand and receptor pairs expressed in synaptic companions in Drosophila. Cell 163, 1756–1769 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. W. & Peng, H. B. The operate of mitochondria in presynaptic growth on the neuromuscular junction. Mol. Biol. Cell 19, 150–158 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially secure mitochondrial compartments gas native translation throughout plasticity. Cell 176, 73–84 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gowrisankaran, S. & Milosevic, I. Regulation of synaptic vesicle acidification on the neuronal synapse. IUBMB Life 72, 568–576 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Özel, M. N., Langen, M., Hassan, B. A. & Hiesinger, P. R. Filopodial dynamics and development cone stabilization in Drosophila visible circuit growth. eLife 4, e10721 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, J. et al. Drosophila Fezf coordinates laminar-specific connectivity by cell-intrinsic and cell-extrinsic mechanisms. eLife 7, e33962 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akin, O. & Zipursky, S. L. Frazzled promotes development cone attachment on the supply of a Netrin gradient within the Drosophila visible system. eLife 5, e20762 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moffatt, N. S. C., Bruinsma, E., Uhl, C., Obermann, W. M. J. & Toft, D. Function of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47, 8203–8213 (2008).

    PubMed 

    Google Scholar 

  • Suzuki, M., Suzuki, H., Sugimoto, Y. & Sugiyama, Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 278, 22644–22649 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Alyagor, I. et al. Combining developmental and perturbation-Seq uncovers transcriptional modules orchestrating neuronal transforming. Dev. Cell 47, 38–52 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uyehara, C. M. & McKay, D. J. Direct and widespread position for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc. Natl Acad. Sci. USA 116, 9893–9902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Syed, M. H., Mark, B. & Doe, C. Q. Steroid hormone induction of temporal gene expression in Drosophila mind neuroblasts generates neuronal and glial variety. eLife 6, e26287 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Altmann, C. R. & Brivanlou, A. H. Neural patterning within the vertebrate embryo. Int. Rev. Cytol. 203, 447–482 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Briscoe, J. & Small, S. Morphogen guidelines: design ideas of gradient-mediated embryo patterning. Growth 142, 3996–4009 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaunt, S. J. Hox cluster genes and collinearities all through the tree of animal life. Int. J. Dev. Biol. 62, 673–683 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Miranda, A. & Sousa, N. Maternal hormonal milieu affect on fetal mind growth. Mind Behav. 8, e00920 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akin, O. & Zipursky, S. L. Exercise regulates mind growth within the fly. Curr. Opin. Genet. Dev. 65, 8–13 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ting, C.-Y. et al. Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron 81, 830–846 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizumoto, Okay. & Shen, Okay. Two Wnts instruct topographic synaptic innervation in C. elegans. Cell Rep. 5, 389–396 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. FGF22 and its shut family are presynaptic organizing molecules within the mammalian mind. Cell 118, 257–270 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Picelli, S. et al. Full-length RNA-seq from single cells utilizing Sensible-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS 

    Google Scholar 

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for quick and delicate epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome place. Nat. Strategies 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ambrosini, G., Groux, R. & Bucher, P. PWMScan: a quick software for scanning whole genomes with a position-specific weight matrix. Bioinformatics 34, 2483–2484 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout totally different circumstances, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S. et al. Interactions between the Ig-superfamily proteins DIP-α and Dpr6/10 regulate meeting of neural circuits. Neuron 100, 1369–1384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santiago, I. J. et al. Drosophila Fezf capabilities as a transcriptional repressor to direct layer-specific synaptic connectivity within the fly visible system. Proc. Natl Acad. Sci USA 118, e2025530118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar