The lung microbiome regulates brain autoimmunity

  • Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, way of life and environmental danger components for a number of sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Odoardi, F. et al. T cells grow to be licensed within the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    ADS 
    CAS 

    Google Scholar 

  • O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of continual lung illness. J. Immunol. 196, 4839–4847 (2016).

    PubMed 

    Google Scholar 

  • Jin, C. et al. Commensal microbiota promote lung most cancers improvement by way of γδ T cells. Cell 176, 998–1013 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yokote, H. et al. NKT cell-dependent amelioration of a mouse mannequin of a number of sclerosis by altering intestine flora. Am. J. Pathol. 173, 1714–1723 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ochoa-Repáraz, J. et al. Position of intestine commensal microflora within the improvement of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    PubMed 

    Google Scholar 

  • Berer, Ok. et al. Commensal microbiota and myelin autoantigen cooperate to set off autoimmune demyelination. Nature 479, 538–541 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothhammer, V. et al. Kind I interferons and microbial metabolites of tryptophan modulate astrocyte exercise and central nervous system irritation by way of the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyauchi, E. et al. Intestine microorganisms act collectively to exacerbate irritation in spinal cords. Nature 585, 102–106 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Flügel, A., Willem, M., Berkowicz, T. & Wekerle, H. Gene switch into CD4+ T lymphocytes: inexperienced fluorescent protein-engineered, encephalitogenic T cells illuminate mind autoimmune responses. Nat. Med. 5, 843–847 (1999).

    PubMed 

    Google Scholar 

  • Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS gray matter degeneration. Nature 566, 503–508 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular constructions in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Kivisäkk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells throughout experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lodygin, D. et al. A mix of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in actual time throughout CNS autoimmunity. Nat. Med. 19, 784–790 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Starossom, S. C. et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawakami, N. et al. The activation standing of neuroantigen-specific T cells within the goal organ determines the medical consequence of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Odoardi, F. et al. On the spot impact of soluble antigen on effector T cells in peripheral immune organs throughout immunotherapy of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 104, 920–925 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hanisch, U. Ok. & Kettenmann, H. Microglia: lively sensor and versatile effector cells within the regular and pathologic mind. Nat. Neurosci. 10, 1387–1394 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Rock, R. B. et al. Transcriptional response of human microglial cells to interferon-γ. Genes Immun. 6, 712–719 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Popovic, N. et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 51, 215–223 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Elmore, M. R. et al. Colony-stimulating issue 1 receptor signaling is critical for microglia viability, unmasking a microglia progenitor cell within the grownup mind. Neuron 82, 380–397 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz, M. et al. Distinct and nonredundant in vivo capabilities of IFNAR on myeloid cells restrict autoimmunity within the central nervous system. Immunity 28, 675–686 (2008).

    CAS 

    Google Scholar 

  • Khorooshi, R. et al. Induction of endogenous sort I interferon throughout the central nervous system performs a protecting position in experimental autoimmune encephalomyelitis. Acta Neuropathol. 130, 107–118 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McNab, F., Mayer-Barber, Ok., Sher, A., Wack, A. & O’Garra, A. Kind I interferons in infectious illness. Nat. Rev. Immunol. 15, 87–103 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley, Ok. C. et al. Microbiota-driven tonic interferon indicators in lung stromal cells shield from influenza virus an infection. Cell Rep. 28, 245–256 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • d’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Complete lipopolysaccharide from the human intestine microbiome silences toll-like receptor signaling. mSystems 2, e00046-17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. et al. Dysregulated lung commensal micro organism drive interleukin-17B manufacturing to advertise pulmonary fibrosis by their outer membrane vesicles. Immunity 50, 692–706 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bhor, V. M., Thomas, C. J., Surolia, N. & Surolia, A. Polymyxin B: an ode to an previous antidote for endotoxic shock. Mol. Biosyst. 1, 213–222 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Vargas-Caraveo, A. et al. Lipopolysaccharide enters the rat mind by a lipoprotein-mediated transport mechanism in physiological situations. Sci. Rep. 7, 13113 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandiego, C. M. et al. Imaging sturdy microglial activation after lipopolysaccharide administration in people with PET. Proc. Natl Acad. Sci. USA 112, 12468–12473 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. & Huffnagle, G. B. The microbiome and the respiratory tract. Annu. Rev. Physiol 78, 481–504 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Belkaid, Y. & Hand, T. W. Position of the microbiota in immunity and irritation. Cell 157, 121–141 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erny, D. et al. Host microbiota continuously management maturation and performance of microglia within the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braniste, V. et al. The intestine microbiota influences blood–mind barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. An intestinal commensal symbiosis issue controls neuroinflammation by way of TLR2-mediated CD39 signalling. Nat. Commun. 5, 4432 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonner, J. Ok. et al. Dietary tryptophan hyperlinks encephalogenicity of autoreactive T cells with intestine microbial ecology. Nat. Commun. 10, 4877 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R. & Weinstock-Guttman, B. Interferon β for a number of sclerosis. Chilly Spring Harb. Perspect. Med. 8, a032003 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, B., Chang, E. Y. & Cheng, G. The sort I IFN induction pathway constrains Th17-mediated autoimmune irritation in mice. J. Clin. Make investments. 118, 1680–1690 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Research on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, Ok., McCoy, Ok. D. & Macpherson, A. J. Use of axenic animals in learning the difference of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Kennedy, E. A., King, Ok. Y. & Baldridge, M. T. Mouse microbiota fashions: evaluating germ-free mice and antibiotics therapy as instruments for modifying intestine micro organism. Entrance. Physiol. 9, 1534 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wypych, T. P., Wickramasinghe, L. C. & Marsland, B. J. The affect of the microbiome on respiratory well being. Nat. Immunol. 20, 1279–1290 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Balmer, M. L. et al. The liver could act as a firewall mediating mutualism between the host and its intestine commensal microbiota. Sci. Transl. Med. 6, 237ra266 (2014).

    Google Scholar 

  • Määttä, J. A., Coffey, E. T., Hermonen, J. A., Salmi, A. A. & Hinkkanen, A. E. Detection of myelin primary protein isoforms by natural focus. Biochem. Biophys. Res. Commun. 238, 498–502 (1997).

    PubMed 

    Google Scholar 

  • Murray, C. et al. Interdependent and impartial roles of sort I interferons and IL-6 in innate immune, neuroinflammatory and illness behaviour responses to systemic poly I:C. Mind Behav. Immun. 48, 274–286 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rittirsch, D. et al. Acute lung damage induced by lipopolysaccharide is impartial of complement activation. J. Immunol. 180, 7664–7672 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Klindworth, A. et al. Analysis of basic 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based variety research. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Hoyningen-Huene, A. J. E. et al. Bacterial succession alongside a sediment porewater gradient at Lake Neusiedl in Austria. Sci. Information 6, 163 (2019).

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a flexible open supply software for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “All-species Dwelling Tree Venture (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database undertaking: improved knowledge processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. GMPR: a sturdy normalization methodology for zero-inflated rely knowledge with software to microbiome sequencing knowledge. PeerJ 6, e4600 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, Ok. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R bundle to analyse and visualise 16S rRNA amplicon knowledge. Preprint at https://doi.org/10.1101/299537 (2018).

  • Wickham, H. ggplot2: Elegant Graphics for Information Evaluation (Springer, 2016).

  • Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Cabeza, R. et al. An RNA sequencing transcriptome evaluation reveals novel insights into molecular points of the nitrate influence on the nodule exercise of Medicago truncatula. Plant Physiol. 164, 400–411 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of huge gene lists utilizing DAVID bioinformatics assets. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar 

  • Doorn, Ok. J. et al. Mind region-specific gene expression profiles in freshly remoted rat microglia. Entrance. Cell. Neurosci. 9, 84 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klinkert, W. E. et al. TNF-α receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an summary. J. Neuroimmunol. 72, 163–168 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.